Different mechanisms confer gradual control and memory at nutrient- and stress-regulated genes in yeast

aydin-movieSelcan Aydin measured GAL1 gene expression at low galactose levels in single yeasts using timelapse luminescence microscope. Her data shows that the graded increase in GAL1 induction at the population level reflects a heterogeneous induction lag at the single cell level (click here to see movie). This work illustrates the power of single cell analysis using timelapse luminescence microscopy; see Mazo-Vargas et al, MBoC 2014.  This was a quick collaboration with the Pascual-Ahuir and Proft labs.

Rienzo A, Poveda-Huertes D, Aydin S, Buchler NE, Pascual-Ahuir A, Proft M. Different mechanisms confer gradual control and memory at nutrient- and stress-regulated genes in yeast. Mol. Cell. Biol. 2015; 35: 3669-83.

Buchler lab at 2015 Summer q-bio

StJohns-q-bioOur lab was out in full force at the Ninth q-bio Conference in Blacksburg, Virginia.

Redox rhythm reinforces circadian clock to gate immune response

Screen Shot 2015-06-22 at 11.09.50This paper combined experiment and theory to demonstrate that newly discovered circadian redox rhythms  regulate the plant circadian clock through NPR1, a master immune regulator. Sargis Karapetyan developed a mathematical model of the plant circadian clock to uncover new regulatory links (red arrows). We learned that NPR1 activates the expression of key circadian clock genes (TOC1, PRR7, LHY) in a “balanced” fashion, such that the amplitude is boosted with no change in period or phase during acute redox perturbation. This was a fun and productive collaboration with the Dong lab.  Read more about it here on the Duke Today website.

Zhou M, Wang W, Karapetyan S, Mwimba M, Marques J, Buchler NE, Dong X. Redox rhythm reinforces circadian clock to gate immune response. Nature 523: 472 (2015)